Evapotranspiration Monitoring at a Wetland Site in the New Jersey Pinelands

Robert Nicholson David Sumner Rick Edwards

U.S. Geological Survey

Kirkwood-Cohansey Project A hydrologic/ecological investigation in the New Jersey Pinelands

New Jersey Pinelands Commission U.S. Geological Survey Rutgers University U.S. Fish and Wildlife Service New Jersey Department of Environmental Protection

science for a changing world

Why Monitor Evapotranspiration?

Applications of ET Monitoring Data

- Water budget evaluations
- Quantifying seasonal water availability

 Water used by vegetation types
 Water available for aquifer recharge
- Drought management
 - Tracking and anticipating conditions

Water Budget Example

Methods of ET Estimation

- Empirical (Thornthwaite rough estimate for a region)
- Physically-Based Models (Penman-Monteith, Priestly-Taylor)
- Chamber methods
 - Surround all or part of individual plant; measure flux; extrapolate to larger area
- Micrometeorological methods
 - Profile method
 - Bowen ratio energy budget
 - Eddy correlation

methods allow:

- high temporal resolution
- spatial averaging

Eddy correlation method **ET** = $\overline{\rho_v W}$ = cov (ρ_v ,w) $\rho_v = vapor density$ w = vertical wind speed and similarly for H Use as "direct" ET measurement or use results in an energy balance variant method

Evapotranspiration Objectives

Subseasonal ET estimates

Relations between ET and

- Soil Moisture
- Depth to water
- Radiation

McDonalds Branch Tower Site Wetlands Vegetation

Predominantly pitch pine lowlands Atlantic white cedar

80-ft Flux Tower at McDonalds Branch Site

Krypton hygrometer

Eddy correlation instrumentation

3-D sonic anemometer

Daily Energy Fluxes, 11/9/04-12/20/05

Monthly Energy Fluxes, 12/04-11/05

1 w/m2 LE ~ 1.07 mm ET (depends on temperature)

Total precipitation was 120.8 cm, or about 48"

Total ET for 12-month period was 81.4 cm, or about 32 "

USGS science for a changing world

Hydrologic Conditions at ET Tower Site , 11/9/04-12/20/05

Weekly Measurements Showing Lower LE during dry period

LE = Latent Heat Flux Rn = Net Radiation

ET Results in Water Budget

WEEKLY WATER FLUXES

SUMMARY

Evapotranspiration...

- is a large part of the water budget
- can be measured directly
 - Quantified on a daily basis
 - Spatially averaged
 - ✓ Related to other conditions

 monitoring can provide an improvement in quantitative analysis of water availability and drought conditions

